CORRUPTING ANCIENT SPIRITS

Penetration Testing Oracle Forms

Bálint Varga-Perke 2017.10.20.

ABOUT

BÁLINT VARGA-PERKE (BUHERÁTOR)

- Silent Signal co-founder
- Pentester
 - Financial institutions
 - Healthcare
 - Development companies
- Long time Hacktivity supporter
 - ex-Orga
 - CTF/wargame creator
 - Hack the Vendor winner
- Ex-blogger and local know-it-all ◎

ORACLE FORMS

"Oracle Forms, a component of Oracle Fusion Middleware, is Oracle's long-established technology to design and build enterprise applications quickly and efficiently."

Name	Version	(*1) Database	Character/GUI	1979
IAF		2	Character	No IDE
FastForms+IAG		4	Character	1985
SQL*Forms	2	5	Character	
SQL*Forms	2.3	5	Character	New IDE, No PL/SQL, User Exits, INP A
SQL*Forms	3	6	Character	Major Rewrite, New IDE, PL/SQL, X Sup
Oraclo Forme	4.0	6.7	GUI /	Major Rewrite, New IDE, FMB source bir

				v4.5 by claiming that this was a patch rei
Oracle Forms —(The WWW	5 happer	7 ned!)	GUI / Character	1997
Oracle Forms	6	8	GUI / Character	Forms Server / Web Forms introduced. C and uses a lot of memory per session.
Oracle Forms	6i	8	GUI / Character	
Oracle Forms	9i (*2)	9i	GUI	Client-Server runtime removed leaving Formore effective communication between u
Oracle Forms	10g	10g	GUI	This is a Forms 9 release (9.0.4.0.19). Rev9.0.4.0.19. Not forward compatible with
Oracle Forms Oracle Forms	10g 10gR2	10g 10gR2	GUI	, , , , ,
				v9.0.4.0.19. Not forward compatible with
Oracle Forms	10gR2	10gR2	GUI	v9.0.4.0.19. Not forward compatible with version 10.1.2.0.2 - registry home key mo

Solution for Error FRM-92095: Oracle Jnitiator version too low

By: Guest Author

Symtom:

After logging into application, system pop up below error message:

FRM-92095: Oracle JInitiator version too low. Please install version 1.1.8.2 or higher

Cause:

The JRE version is not incompatible.

Solution 1:

This is a workaround solution, For Window 7 user, Add a OS Parameter: JAVA_TOOL_OPTIONS, and parameter value is: -Djava.vendor="Sun Microsystems Inc."

PREVIOUS WORK

JOXEAN KORET (@MATALAZ) – HACKPROOFING ORACLE FINANCIALS

- Examined Forms as a component of E-Business Suite
- Focus on the framework itself, multiple vulnerabilities

YOURS TRULY -

AUTOMATED SECURITY TESTING OF ORACLE FORMS APPLICATIONS

- Focus on applications implemented using Forms
- Tools on <u>GitHub</u>

PROTOCOL OVERVIEW

PRE-WEB CONCEPTS:

- Transport over HTTP or raw TCP
- Payload encrypted
 - "not as strong as the SSL standard"
 - HTTPS is supported No one uses it
- Custom data serialization
- "Rapid Application Development"
 - Lots of generated code
 - Limited developer insight
- Event-driven operation
 - Server-side state storage

EVENT-DRIVEN OPERATION

THE "STATELESS" WEB:

- 1. User selected item ID=1337
- 2. Full new state sent to client

SERVER-SIDE STATE:

- 1. User left-clicked at coordinates X=153 Y=246
 - Minimal delta state sent to client
- 2. User selected 2nd option from List 3
 - Minimal delta state sent to client
- 3. User left-clicked at coordinates X=84 Y=323
 - Minimal delta state sent to client

EVENT-DRIVEN OPERATION

A WORLD OF PAIN:

- Only string values can be directly manipulated
 - Numeric ID's are only valid locally
 - Custom application logic may be interesting!
- Actions become invalid as the UI state changes
 - Have to reset state before every test case
- See also: Java Servlet Faces:P
 - <u>Testing Stateful Web Application Workflows</u> by Dnet

SERIALIZATION

- Binary (== not human readable) representation
- Variable length fields
- Recursive representation
 - Messages
 - Objects (can be Messages)
 - Fields
- Caching and references to previous objects

1. Table Object serialization formats				
Type	Property Type Header	Representation		
Boolean (true)	0x5000	N/A		
Boolean (false)	0x6000	N/A		
Integer (0)	0x1000	N/A		
Integer (0-255)	0x2000	Integer value as 1 byte		
Integer (255-65535)	0x3000	Integer value as 2 bytes		
Integer (other)	0x0000	Value as 4 bytes		
String	0x4000	1 byte identifier (see description below) Length: 2 bytes UTF-8 string buffer		
String reference	0x9000	1 byte identifier 1 byte new identifier (see description below)		
Byte	0x7000	Byte value		

Table Object confolination formats

1. Table Object serialization formats					
Type	Property Type Header	Representation			
Boolean (true)	0x5000	N/A			
Boolean (false)	0x6000	N/A			
Integer (0)	0x1000	N/A			
Integer	0x2000	Integer value as 1 byte			
(0-255)					
Integer	0x3000	Integer value as 2 bytes			
(255-65535)					
Integer (other)	0x0000	Value as 4 bytes			
String	0x4000	1 byte identifier (see description below)			
		Length: 2 bytes			
		UTF-8 string buffer			
String reference	0x9000	1 byte identifier			
		1 byte new identifier (see description			
		below)			
Byte	0x7000	Byte value			

SERIALIZATION

NON-TRIVIAL FORMAT

- Tried reimplementation in Java and Python
 - FAIL
- Tried code generation with Kaitai Struct
 - Unfortunately it was designed for sane formats...
 - FAIL

BUT IT'S JAVA!

- Message parsing code is 100% reusable!
 - frmall.jar
 - oracle.forms.engine.Message
 - readDetails(), writeDetails()

ENCRYPTION

"NOT AS STRONG AS THE SSL STANDARD"

- Easy to spot:
 - EncryptedInputStream
 - EncryptedOutputStream
- RC4 can be identified easily
- Standard implementation

```
public synchronized void setEncryptKey(byte[] paramArrayOfByte)
         if ((paramArrayOfByte == mull) || (paramArrayOfByte,length == 0) || (
                  throw new RuntimeException();
         this.mSeedBuffer = new int['A'];
         this.mI = (this.mJ = 0);
         for (int i = 0; i < 256; i++) {
                   this.mSeedBuffer[i] = i;
         int k;
         int j = k = 0;
         for (int i = 0; i < 256; i++)
                   k = (k + (paramArrayOfByte[j] & 0xFF) + this.mSeedBuffer[i]) % 256;
                   int m = this.mSeedBuffer[i];
                   this.mSeedBuffer[i] = this.mSeedBuffer[k];
                  this.mSeedBuffer[k] = m;
                   j = (j + 1) % paramArrayOfByte.length;
```

RC4

RC4 IS BROKEN

- But we are not the NSA!
 - Bar-Mitzvah, NOMORE are against SSL/TLS
 - Exploitation impractical
- Still, RC4 is a simple stream cipher ©
 - Trivial attacks if not used carefully
 - It is not used carefully...

NO INTEGRITY CHECKS


```
Plaintext:
          |01011001101| Plaintext: |11011001101|
               XOR
           +-----
          |01101101010| Keystream:
                                   01101101010
Keystream:
                                       XOR
                                   +^----+
             --------+
Ciphertext: |00110100111| Ciphertext: |10110100111|
                                   +^----+
             --------+
                                   X
```

KNOWN-PLAINTEXT ATTACK signal

++ KSKSKSKSKSKSKSKSKSKSKSKSKSKS
++ ++ PqPqPqPqPqPqPqPqPqPqPqPqPqPq ++
++ KSKSKSKSKSKSKSKSKSKSKSKSKSKS ++
++ CpCpCpCpCpCpCpCpCpCpCpCpCpCp +

KNOWN-PLAINTEXT ATTACK signal

$$Cq = K + Pq$$

 $Cp = K + Pp$
 $Cq + Cp = Pq + Pp$
 $Pp = Cq + Cp + Pq$

KEY EXCHANGE


```
localDataOutputStream.writeInt(NEG_SEND);
localDataOutputStream.writeInt(i = new
Random().nextInt());
localDataOutputStream.flush();
k = localDataInputStream.readInt();
j = localDataInputStream.readInt();
```

```
byte[] arrayOfByte = new byte[5];
arrayOfByte[0] = ((byte)(i >> 8));
arrayOfByte[1] = ((byte)(j >> 4));
arrayOfByte[2] = -82;
arrayOfByte[3] = ((byte)(i >> 16));
arrayOfByte[4] = ((byte)(j >> 12));
if (this.mUseNativeHTTP) {
this.mHNs.setEncryptKey(arrayOfByte);
}
```

THE DEADLY MIXTURE

ACCIDENTAL SECURITY?

- HTTP is message based RC4 is a stream cipher
- HTTP is stateless The cipher is stateful

PERFECT SYNC NEEDED!

- No extra/missing messages
 - Can't use Repeater
 - Can't use Scanner
- No extra/missing bytes
 - Can only do length preserving transformations on strings

FIRST SOLUTION

ORACLEFORMSTESTER

- Burp plugin written in Java
- Intercepts key exchange and de/encrypts HTTP bodies
- Reuses the vanilla frmall.jar for serialization
- Saves every (SHA(cipher text);[cipher state]) pair
- Looks up the matching cipher state when an encrypted req. is sent to Scanner and decrypts it
- Creates new Scanner insertion points for String properties
- Serializes and encrypts for sending

ORACLEFORMSTESTER

PROBLEMS

- Client inevitably gets desynchronized
 - Client cut-off is needed to avoid interference
 - Needs client restart after every scan
- Most messages are not editable
- Macros not supported
 - Critical for stateful testing!
- Complex design + mostly unmaintained *whistles*
 - Prone to bugs
 - Hard to debug
 - Hard to fix

IDEAS FOR FIXING

RESYNCING THE CIPHER

- We only need to set a byte array that is the RC4 state
- Java debuggers?
 - Mostly for graphical IDE's (assuming src availability)
 - JDB is pain
 - Attaching a debugger to archaic applets is pain
 - How to handle object lifecycle?
 - Scriptability?
- Patching a "debugger" into the client
 - Java Security Policy
 - No high-level communication primitives

ZERO-STATE

STRIPPING CRYPTO OFF THE CLIENT

- Preventing the client from encrypting Messages
- Tools consume plain (==stateless) traffic
- Upstream proxy performs crypto
 - Simple KEX
 - Standard algorithm
- New tools: OracleFormsSerializer + MitMproxy inline script

DEMO

AUTOMATED TESTING

STILL NOT EASY

- Application state still needs to be taken care of
- Short output
 - + string caching hides relevant information
- Noisy output

PRO TIPS

KNOW YOUR TARGET

- Don't rely solely on automated results
- Focus on relevant weaknesses
- Manually review Scanner outputs
 - And write application specific tools
- Source code review can be highly effective
 - For injection-style issues
- Special care for AUTHN/AUTHZ

THANK YOU!

BÁLINT VARGA-PERKE

VPBALINT@SILENTSIGNAL.HU

- FACEBOOK.COM/SILENTSIGNAL
- @SilentSignalHU
- @buherator

